

SAMPRIAN PTY LTD

Preliminary Geotechnical Investigation Report

757-763 George Street, Haymarket NSW

E22293 GA_Rev3 8 September 2020

Document Control

Report Title: Preliminary Geotechnical Investigation Report, 757-763 George Street, Haymarket NSW

Report No: E22293 GA_Rev3

Copies	Recipient	
1 Soft Copy (PDF – Secured, issued by email)	Mitchell Favaloro Samprian Pty Ltd PO Box 3019, PETERSHAM NORTH NSW 2049	
2 Original (Saved to Digital Archives) (Z:\07 - Projects\E22293 - Ceerose - Haymarket - PGI & ESA & ASSMP\PSI & ESA\05_Deliverables\Work in Progress\E22293 GA_Rev3 - PGI.docx)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	

Author

Morossel

Technical Reviewer

Mree

Rachael P Geotechni	rosser cal Engineer	Mark Green Senior Geotechnical Engineer		
Revision	Details	Date	Amended By	
	Original	3 October 2014		
1	Updated design advice	7 October 2014	MG	
2	Updated architectural drawings	7 July 2020	SK	
3	Updated client details and drawings	8 September 2020	SK	

© 2020 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

Page Number

1.	INT	RODUC	TION	4
	1.1	Backgr	round	4
	1.2	Propos	ed Development	4
	1.3	Investig	gation Objectives	4
	1.4	Scope	of Works	5
	1.5	Constra	aints	6
2.	SITE	E DESCI	RIPTION	7
	2.1	Site De	escription and Identification	7
	2.2	Local L	and Use	8
	2.3	Region	al Setting	8
3.	ASS	SESSME	ENT RESULTS	10
	3.1	Stratigr	raphy	10
	3.2	Ground	dwater Observations	11
	3.3	Test Re	esults	11
4.	REC	OMME	NDATIONS	12
	4.1		chnical Issues	12
	4.2	Dilapida	ation Surveys	12
	4.3	Neighb	ouring Buildings	12
	4.4	Excava	ation Methodology	12
		4.4.1	Excavation Assessment	12
		4.4.2	Excavation Monitoring	14
	4.5	Ground	dwater Considerations	14
	4.6	Excava	ation Retention	15
		4.6.1	Support Systems	15
		4.6.2 4.6.3	Excavation adjacent to RMS Assets Retaining Wall Design Parameters	16 17
	47			
	4.7 4.8	Founda	ent Floor Slab	19 19
	4.0	Dasein		19
5.	FUR	THER O	GEOTECHNICAL INPUTS	20
6.	STA	TEMEN	IT OF LIMITATIONS	21
RE	FERE	INCES		22
AB	BRE	VIATION	IS	22

Schedule of Tables

Table 2-1	Summary of Site Information	7
Table 2-2	Summary of Local Land Use	8
Table 2-3	Topographic and Geological Information	8
Table 3-1	Summary of Subsurface Conditions	10
Table 3-2	Groundwater Levels	11
Table 3-3	Summary of Soil Laboratory Test Results	11
Table 4-1	Geotechnical Design Parameters	18

Appendices

FIGURES

Figure 2 Borehole Location Plan

APPENDIX A – BOREHOLE LOGS AND EXPLANATORY NOTES

APPENDIX B - LABORATORY CERTIFICATES

- **APPENDIX C VIBRATION LIMITS**
- **APPENDIX D IMPORTANT INFORMATION**

1. Introduction

1.1 Background

At the request of Samprian Pty Ltd (the Client), El Australia (El) has carried out a Preliminary Geotechnical Investigation Report (PGI) for the proposed development at 757-763 George Street, Haymarket NSW (the Site).

This PGI report has been prepared to provide preliminary geotechnical advice and recommendations in support of a development application and the preparation of initial concept designs for proposed mixed use development. The original fieldwork was carried out in accordance with the scope of works outlined in our proposal referenced P12702.1, dated 18 August 2014.

An Environmental Site Assessment (ESA) for the Site was also undertaken by EI and is presented separately in the report, referenced as E22293 AA. The ESA provides more information on environmental impact of the soils and groundwater at the site from past industrial use.

On 7 September 2020, the Client provided revised architectural plans to update the report as part of Revision 3.

1.2 Proposed Development

The following documents, supplied by the Client, were used to assist with the preparation of this PGI report:

- Architectural drawings prepared by Grimshaw Architects LLP Project No. 19287:
 - Drawing No. A03-1000 to A03-1004, A03-1006, A03-1010 to A03-1012, A03-1021, A03-1031, A03-1033, A06-1000, Rev. 4, dated 31 August 2020
 - Drawing No. A06-1010 and A06-1011, Rev. 3, dated 31 August 2020
 - Drawing No. A07-1000, Rev. 1, dated 31 August 2020
- Detailed site survey plan prepared by Lawrence Group Pty Ltd Job No. 142937, Drawing No. DETL-001/A, Sheet 1 of 3, dated 21 August 2014;
- An unreferenced area schedule, dated 27 August 2020.

Based on the provided documents, El understands that the proposed development involves the demolition of the existing buildings and the construction of a thirty-two hotel and retail building overlying a two-level basement. The Finished Floor Level (FFL) of the lowest basement level is proposed as RL 3.0m. A Bulk Excavation Level (BEL) of RL 2.7m AHD has been assumed to allow for the construction of a basement slab; hence, an excavation depth of approximately 9.5 m Below Existing Ground Level (BEGL) has been estimated across the site. Locally deeper excavations may be required for footings, lift overrun pits, crane pads, and service trenches. The proposed basement extends up to the all site boundaries.

1.3 Investigation Objectives

The objective of the PGI is to assess site surface and subsurface conditions and to provide preliminary geotechnical advice and recommendations addressing the following:

Dilapidation Surveys;

- Excavation methodologies and monitoring requirements;
- Groundwater considerations;
- Vibration considerations;
- Excavation support requirements, including geotechnical design parameters for retaining walls and shoring systems;
- Building foundation options, including;
 - Lot classification in accordance with AS2870:2011 for shallow footing design;
 - Preliminary design parameters.
 - Earthquake loading factor in accordance with AS1170.4:2007; and
 - Subgrade preparation and earthworks requirements.
- The requirement for additional geotechnical works.

1.4 Scope of Works

The scope of works for the PGI included:

- Preparation of a Work Health and Safety Plan;
- Review of relevant geological maps for the project area;
- Site walkover inspection by a Geotechnical Engineer to assess topographical features and site conditions;
- Scanning of proposed borehole locations for buried conductive services using a licensed service locator with reference to Dial Before You Dig (DBYD) plans;
- Concrete coring through existing concrete hardstand at two borehole locations (BH1/MW1 and BH2);
- Auger drilling of two boreholes (BH1/MW1 and BH2) by a track-mounted drill rig using solidstem, continuous flight augers equipped with 'Tungsten-Carbide' (T-C) bit. BH1/MW1 and BH2 were augered to 7.2 m (RL 4.6m AHD) and 7.3 m (RL 4.7m AHD) BEGL, respectively.
 - Standard Penetration Testing (SPT) was carried out (as per AS 1289.6.3.1-2004), where possible, during auger drilling of the boreholes to assess soil strength/relative densities.
 - Measurements of groundwater seepage/levels, where possible, in the augered sections of the boreholes during and shortly after completion of auger drilling;
 - The strength of the bedrock in the augered sections of the boreholes was assessed by observation of the auger penetration resistance using a T-C drill bit and examination of the recovered rock cuttings. It should be noted that rock strengths assessed from augered boreholes are approximate and strength variances can be expected.
- Continuation of BH1/MW1 and BH2 using NMLC diamond coring techniques to termination depths of 14.95 m (RL -3.15m AHD) and 12.00 m (RL 0.0m AHD) BEGL, respectively. The rock core photographs are presented in **Appendix A**;
- Borehole BH1/MW1 was converted into a groundwater monitoring well to allow for longterm groundwater monitoring;

- Backfilling the remaining borehole with drilling spoil in the reverse order of excavation and capping of the surface with quick-set concrete; and
- Soil and rock samples were sent to Resource Laboratories, which is a National Australian Testing Authority (NATA) accredited laboratory, for testing and storage.
- Preparation of this PGI report.

An EI Geotechnical Engineer was present full-time onsite to set out the borehole locations, direct the testing and sampling, log the subsurface conditions and record groundwater levels.

1.5 Constraints

The PGI was limited by the preliminary intent of the investigation and the presence of existing site structures and vehicles at the time of the investigation. The discussions and advice presented in this report are preliminary and intended to assist in the preparation of initial designs for the proposed development for the development of initial concept designs for the development. Further geotechnical investigation should be carried out before final design to confirm both the geotechnical model and the preliminary design parameters provided in this report.

2. Site Description

2.1 Site Description and Identification

The site identification details and associated information are presented in **Table 2-1** below while the site locality is shown on **Figure 1**. An aerial photograph of the site is presented in **Plate 1** below.

Information	Detail	
Street Address	757-763 George Street, Haymarket NSW 2000	
Lot and Deposited Plan (DP) Identification	Lot 1 in DP 1031645 and Lot 11 in DP 70261	
Brief Site Description	The site is irregular in shape. It is located on the corner of George Street and Valentine Street. The site is currently occupied by two 2 to 3-storey brick mixed commercial and residential structures with no basement levels. On the north-western corner is concrete hardstand parking with access from George Street. All paved surfaces were found to be in good condition.	
	George Street is a NSW Transport Roads and Maritime Services (RMS) asset. The proposed development should consider the NSW Department of Planning 'Development near rail corridors and busy roads' interim guidelines.	
Site Area	The site area is approximately 1030 m^2 (based on the provided area schedule referenced above).	

Plate 1: Aerial photograph of the site (source: SIX Maps, accessed on 24 June 2020)

2.2 Local Land Use

The site is situated within an area of mixed metropolitan use. Current uses on surrounding land at the time of our presence on site are described in **Table 2-2** below.

Table 2-2 Summary of Local Land Use

Direction Relative to Site	Land Use Description	
North	A nine to twelve-storey mixed commercial and residential brick building with six levels of basement car parking. The final finished floor of last basement level is given at RL -7.8 mAHD, based on structural drawings provided by Samprian Pty Ltd. The basement footprint is expected to extend to the site boundary.	
East	George Street, with three-storey commercial brick buildings with two basement levels and Christ Church St. Laurence beyond. George Street is a RMS asset.	
South	Valentine Street, with two to four-storey mix use brick buildings beyond.	
West	A ten-storey mix use brick building (UTS facility) with a two-level basement car park adjacent to the building. The basement footprint is known to extends close to the western site boundary.	

2.3 Regional Setting

The site topography and geological information for the locality is summarised in **Table 2-3** below.

Attribute	Description
Topography	The regional topography consists of gently undulating rises on Wianamatta Group Shales and Hawkesbury Sandstone. Local relief to 30 m, slopes are usually <5%. Broad rounded crests and ridges with gently inclined slopes.
	Local topography slopes downwards to the northwest, with the site sloping down George Street at 5° to 10° and down Valentine Street at $<5^{\circ}$.
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 (DMR 1991) indicates the site to be underlain by Hawkesbury Sandstone, which typically comprises Medium to coarse-grained quartz sandstone with very minor shale and laminite lenses.
	Pells, Braybrooke and Och have produced a map entitled <i>Map and Selected Details of</i> <i>Near Vertical Structural Details in the Sydney CBD</i> which indicates that the Pittman LVI dyke, trending south east to north west may intersect the proposed basement excavation. The Martin Place Joint Swarm is approximately 50m north west of the site, which trends north east to south west.
	Samprian Pty Ltd provided as built construction drawing 'Footing Plan & Details' Project No. 9371-5 Rev D for 743-755 George Street, Haymarket which has a 'clay dyke trending north west to south east through the basement.
Soil Landscapes	The Soil Conservation Service of NSW Sydney 1:100,000 Soil Landscapes Series Sheet 9130 (2nd Edition) indicates that the residual landscape at the site likely comprises a combination of the Blacktown and Gymea Landscape.
	Soils are generally shallow to moderately deep (< 1 m) red and brown podzolic soils on upper slopes; deep (150-300 cm) yellow podzolic soils and soloths on lower slopes for the Blacktown Landscape.
	Soils are generally shallow to moderately deep (30-100 cm) yellow earths and earthy sands on crests; shallow (< 20 cm) siliceous sands on leading edges of benches; localised

Attribute	Description
	gleyed podzolic soils and yellow podzolic soils on shale lenses; shallow to moderately deep (< 1 m) siliceous sands and leached sands along drainage lines for the Gymea Landscape.
	Land is dominantly intensive residential and light and heavy industry, or urban residential. Landscape limitations include moderately reactive, highly plastic subsoil and poor soil drainage, or localised steep slopes, high soil erosion, rock outcrop, shallow highly permeable soil.
Acid Sulfate Soills (ASS)	In accordance with the Sydney Local Environmental Plan 2012 Acid Sulfate Soils Map – Sheet ASS_015, the site falls within a category classified as Class 5 Acid Sulfate Soils (ASS).
	An acid sulfate soil assessment would be required where works are within 500 m of adjacent Class 1, 2, 3 or 4 land that is below 5 m AHD and by which the water table is likely to be lowered below 1 m AHD on adjacent Class 1, 2, 3 or 4 land.

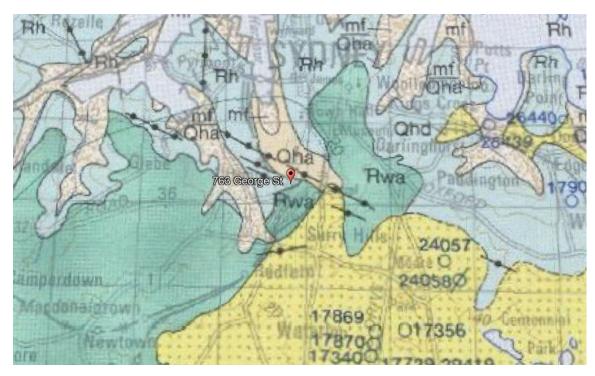


Plate 2: Excerpt of geological map showing location of site.

3. Assessment Results

3.1 Stratigraphy

For the development of a site-specific geotechnical model, the observed stratigraphy of heterogeneous fill from an infilled former basement (BH2 only) overlying a residual soil and weathered bedrock profile has been grouped into five geotechnical units. A summary of the subsurface conditions across the site, interpreted from the investigation results, is presented in **Table 3-1**.

More detailed descriptions of subsurface conditions at the test locations are available in the borehole logs presented in **Appendix A**. The details of the method of soil and rock classification, explanatory notes and abbreviations adopted in the borehole logs are also presented in **Appendix A**.

Unit	Material ²	Depth to Top of Unit (m BEGL) ¹	RL of Top of Unit (m AHD) ¹	Observed Thickness (m)	Comments
1	Fill	0	12.0 to 11.8	0.8 (BH1) to 7.25 (BH2)	Concrete overlying fine to medium grained silty sand and sandy clay, low plasticity. Fill includes brick, concrete and shale and sandstone. At 6.0 m in BH2 a brick layer was encountered, consistent with the base of an in filled basement. Deep fill in BH2 is associated with infill of former basement. Fill is inferred to be uncontrolled and poorly compacted.
2	Residual Soil	0.8 (BH1 only)	11.0	2.2	Stiff, high plasticity clay with trace fine to medium grained sand, becoming stiff, medium plasticity silty clay with trace rootlets. SPT N values range from 11 to 12.
3	Extremely Weathered Sandstone	2.2 (BH1 only)	9.6	3.8	Generally extremely weathered, extremely low to very low strength, fine to medium grained sandstone.
4	Distinctly Weathered Sandstone	6.0 to 7.3	6.0 to 4.5	1.1 to 1.55	Generally distinctly weathered, very low to low strength sandstone. 0-5° bedding, <1 mm thick. Crushed seams up to 10 mm thick and decomposed seams up to 60 mm thick. Unit 4 is classified as Class V Sandstone in accordance with Pells (2004).
5	Slightly Weathered to Fresh Sandstone	7.55 to 8.35	4.25 to 3.65	>7.4 ²	Slightly weathered to fresh, medium to high strength sandstone. 0-30° bedding, <1-5 mm thick. Two joint sets were observed one dipping at 60-80° and the second at 0-20°. Unit 5 is classified as Class IV to III Sandstone in accordance with Pells (2004).

Table 3-1 Summary of Subsurface Conditions

Note 1 Approximate depth below ground level at the time of our investigation. More detailed descriptions of subsurface conditions are available in the borehole logs in Appendix A. Depths may vary across the site. Note 2 Observed up to borehole termination depth in BH1 and BH2.

3.2 Groundwater Observations

No groundwater seepage inflows were observed during the drilling of BH1/MW1 and BH2.

Groundwater measurements taken during the monitoring visit are presented in **Table 3-2**.

Table 3-2 Groundwater Levels

Borehole ID	Date of Observation	Depth to Groundwater (mBGL)
BH1/MW1	18-08-2014	Dry
BITI/WW T	01-10-2014	4.95

3.3 Test Results

Two soil samples were selected for laboratory testing to assess the following:

- Soil moisture content and Atterberg Limits (Liquid Limit and Plastic Limit); and
- Soil aggressivity (pH, Chloride and Sulfate content and electrical conductivity).

A summary of soil test results is provided in Table 3-3.

Selected rock core samples were tested by Resource Laboratories to determine Point Load Strength Index (I_{50}) values to assist with rock strength classification. The results of the testing are shown on the borehole logs at the appropriate depths.

Laboratory test certificates are presented in Appendix B.

 Table 3-3
 Summary of Soil Laboratory Test Results

Test/ Sample ID		BH1-4 (1.5-1.95 m BGL)	BH1-6 (4.5-4.95 m BGL)		
Unit		Unit 2	Unit 3		
Material description ¹		SILTY CLAY	CLAY		
	Liquid Limit (%)	47	-		
Atterberg Limits	Plastic Limit (%)	15	-		
	Plasticity Index (%)	32	-		
Moisture Content (%)		17.1	-		
	рН	5.5	5.2		
Soil Aggressivity	Electrical Conductivity (µS/cm)	46	78		
	Sulfate SO4 (mg/kg)	160	620		
	Chloride Cl (mg/kg)	10	30		

Note 1 More detailed descriptions of the subsurface conditions at each borehole location are available on the borehole logs presented in **Appendix A**.

4. Recommendations

4.1 Geotechnical Issues

Based on the results of the assessment, we consider the following to be the main geotechnical issues for the proposed development:

- Potential for the Pittman LVII dyke to be present. Dykes within the Sydney CBD are associated with extremely weathered vertical features, highly fractured rock, groundwater inflow and high lateral stresses. The Martin Place Joint Swarm also has the potential to affect the site. This too may mean a reduction in allowable bearing pressures, increased water inflow, unstable rock faces due to stress relief and adverse jointing.
- Deep fill profile in BH2 as the result of the infilling of a former basement associated with a former building.
- Basement excavation retention to prevent potential lateral deflections and ground loss as a result of excavations. The two neighbouring sites have existing basement excavations which may have temporary or permanent shoring support extending into the site.
- Foundation design for proposed new building loads.
- The proposed basement excavation encountering seepage from the rock interface.

4.2 Dilapidation Surveys

Prior to excavation and construction, we recommend that detailed dilapidation surveys be carried out on all structures and infrastructures surrounding the site that falls within the zone of influence of the excavation to allow assessment of the recommended vibration limits and protect the client against spurious claims of damage. The zone of influence of the excavation is defined by a distance back from the excavation perimeter of twice the total depth of the excavation. The reports would provide a record of existing conditions prior to commencement of the work. A copy of each report should be provided to the adjoining property owner who should be asked to confirm that it represents a fair assessment of existing conditions. The reports should be carefully reviewed prior to demolition and construction.

4.3 Neighbouring Buildings

Prior to any final design or excavation, we recommend that the basement and footings of the adjoining neighbouring buildings be investigated.

4.4 Excavation Methodology

4.4.1 Excavation Assessment

Prior to any excavation commencing, we recommend that reference be made to the Safe Work Australia Excavation Work Code of Practice, dated August 2019.

El assumes that the proposed development will require a BEL of RL 2.7m for the basement, or an excavation depth of about 9.5m BEGL. Locally deeper excavations for footings, service trenches, crane pads and lifts overrun pits may be required.

Based on the borehole logs, the proposed basement excavations will therefore extend through all units as outlined in **Table 3-1** above. As such, an engineered retention system must be installed prior to excavation commencing.

Units 1, 2 and 3 could be excavated using buckets of large earthmoving Hydraulic Excavators, particularly if fitted with 'Tiger Teeth'. Excavation of Units 4 and 5 may present hard or heavy ripping, or "hard rock" excavation conditions. Ripping would require a high capacity and heavy bulldozer for effective production. Wear and tear should also be allowed for. The use of a smaller size bulldozer will result in lower productivity and higher wear and tear, and this should be allowed for. Alternatively, hydraulic rock breakers, rock saws, ripping hooks or rotary grinders could be used, though productivity would be lower and equipment wear increased, and this should be allowed for.

Should rock hammers be used for the excavation of the bedrock, excavation should commence away from the adjoining structures and the transmitted vibrations monitored to assess how close the hammer can operate to the adjoining structures while maintaining transmitted vibrations within acceptable limits. To fall within these limits, we recommend that the size of rock hammers do not exceed a medium sized rock hammer, say 900 kg, such as a Krupp 580, and be trialled prior to use. The transmitted vibrations from rock hammers should be measured to determine how close each individual hammer can operate to the adjoining buildings.

The vibration measurements can be carried out using either an attended or an unattended vibration monitoring system. An unattended vibration monitoring system must be fitted with an alarm in the form of a strobe light or siren or alerts sent directly to the site supervisor to make the plant operator aware immediately when the vibration limit is exceeded. The vibration monitor must be set to trigger the alarm when the overall Peak Particle Velocity (PPV) exceeds set limits outlined by a vibration monitoring plan. Reference should be made to **Appendix C** for a guide to acceptable limits of transmitted vibrations.

If it is found that the transmitted vibrations by the use of rock hammers are unacceptable, then it would be necessary to change to a smaller excavator with a smaller rock hammer, or to a rotary grinder, rock saws, jackhammers, ripping hooks, chemical rock splitting and milling machines. Although these are likely to be less productive, they would reduce or possibly eliminate risks of damage to adjoining properties through vibration effects transmitted via the ground. Such equipment would also be required for detailed excavation, such as footings or service trenches, and for trimming of faces. Final trimming of faces may also be completed using a grinder attachment rather than a rock breaker in order to assist in limiting vibrations. The use of rotary grinders generally generates dust and this may be supressed by spraying with water.

To assist in reducing vibrations and over-break of the sandstone, we recommend that initial saw cutting of the excavation perimeters through the bedrock may be provided using rock saw attachments fitted to the excavator. Rock sawing of the excavation perimeter has several advantages as it often reduces the need for rock bolting as the cut faces generally remain more stable and require a lower level of rock support than hammer cut excavations, ground vibrations from rock saws are minimal and the saw cuts will provide a slight increase in buffer distance for use of rock hammers. However, the effectiveness of such approach must be confirmed by the results of vibration monitoring.

Groundwater seepage monitoring should be carried out during bulk excavation works and prior to finalising the design of a pump out facility. Outlets into the stormwater system will require Council approval.

Furthermore, any existing buried services, which run below the site, will require diversion prior to the commencement of excavation or alternatively be temporarily supported during excavation, subject to permission or other instructions from the relevant service authorities. Enquiries should also be made for further information and details, such as invert levels, on the buried services.

Consideration should be made to the impact of the proposed development upon neighbouring structures, roadways and services. Basement excavation retention systems should be designed so as to limit lateral deflections.

Contractors should also consider the following limits associated with carrying out excavation and construction activities:

- Limit lateral deflection of temporary or permanent retaining structures;
- Limit vertical settlements of ground surface at common property boundaries and services easement; and
- Limit Peak Particle Velocities (PPV) from vibrations, caused by construction equipment or excavation, experienced by any nearby structures and services.

Monitoring of deflections of retaining structures and surface settlements should be carried out by a registered surveyor at agreed points along the excavation boundaries and along existing building foundations / services/ pavements and other structures located within or near the zone of influence of the excavation. Owners of existing services adjacent to the site should be consulted to assess appropriate deflection limits for their infrastructures. Measurements should be taken in the following sequence:

- Before commencing installation of retaining structures where appropriate to determine the baseline readings. Two independent sets of measurements must be taken confirming measurement consistency;
- After installation of the retaining structures, but before commencement of excavation;
- After excavation to the first row of supports or anchors, but prior to installation of these supports or anchors;
- After excavation to any subsequent rows of supports or anchors, but prior to installation of these supports or anchors;
- After excavation to the base of the excavation;
- After de-stressing and removal of any rows of supports or anchors; and
- One month after completion of the permanent retaining structure or after three consecutive measurements not less than a week apart showing no further movements, whichever is the latter.

4.5 Groundwater Considerations

Groundwater was observed in MW1 at a depth of 4.95m, which is above the assumed BEL.

Due to the low permeability of the bedrock profile any groundwater inflows into the excavation should not have an adverse impact on the proposed development or on the neighbouring sites and should be manageable. However, we expect that some groundwater inflows into the excavation along the soil/rock interface and through any defects within the sandstone bedrock (such as jointing, and bedding planes, etc.) particularly following a period of heavy rainfall. The initial flows into the excavation may be locally high, but would be expected to decrease considerably with time as the bedding seams/joints are drained. We recommend that monitoring of seepage be implemented during the excavation works to confirm the capacity of the drainage system.

We expect that any seepage that does occur will be able to be controlled by a conventional sump and pump system. We recommend that a sump-and-pump system be used both during construction and for permanent groundwater control below the basement floor slab.

We note that high permeability conditions may be possible if a dyke occurs within proposed basement excavation.

In the long term, drainage should be provided behind all basement retaining walls, around the perimeter of the basement and below the basement slab. The completed excavation should be inspected by the hydraulic engineer to confirm that adequate drainage has been allowed for. Drainage should be connected to the sump-and-pump system and discharging into the stormwater system. The permanent groundwater control system should take into account any possible soluble substances in the groundwater which may dictate whether or not groundwater can be pumped into the stormwater system.

The design of drainage and pump systems should take the above issues into account along with careful ongoing inspections and maintenance programs.

4.6 Excavation Retention

4.6.1 Support Systems

From a geotechnical perspective, it is critical to maintain the stability of all adjacent structures and infrastructures during demolition, excavation and construction works.

Based on the provided architectural plans, the proposed basement extends up to the site boundaries. Based on the depth of the excavation, the encountered subsurface conditions and limited setbacks, temporary batters are not possible for this site. Unsupported vertical cuts of the soil are not recommended for this site as these carry the risk of potential collapse especially after a period of wet weather. Collapse of the material may result in injury to personnel and/or damage to nearby structures/infrastructures and equipment.

An engineered shoring wall is required to support the entire excavation, and should be installed prior to excavation. For this site, we recommend the following retention systems:

- Based on the provided documents, the basement of 749 George Street to the north extends up to the shared northern boundary along the west. Also based on El's projects on 187-189 Thomas Street to the west, the basement of this building is known to extend up to the shared western boundary for the majority of the boundary length. It may be possible to excavate adjacent to the basements to the northwest and west without support; however, details of the adjoining basements must be obtained to confirm this possibility.
 - As the proposed basement is shallower than the basement to the north, the surcharge loads of the proposed building on the neighbouring building must be considered. Piles may be required.
 - ➤ As the proposed building is deeper than the basement to the west, the design of excavation support should consider loading from neighbouring structures and the requirement for underpinning be assessed where excavations in rock extend below adjacent building foundation levels.
 - Detailed survey of the relative positions, levels and working loading of neighbouring basements and footings should be acquired prior to final design. The detailed survey should be used to accurately model the interaction of the proposed development with existing structures in the vicinity of the site using finite element software.
- Deep fill was encountered in BH2, which is likely to be associated with a previously existing basement which was backfilled with uncontrolled fill. Where this deep uncontrolled fill is

expected, such as near BH2, a suitable shoring system such as an anchored/propped contiguous pile wall will be required, with mass concrete in between the piles, socketed below BEL. Further investigations must be completed to assess the extent of this deep fill.

 Anchored and/or propped soldier pile wall with mass concrete in between the piles socketed below BEL. These soldier piles may be possible along the eastern and southern elevations of the site, and along the eastern half of the northern elevation, given that the deep fill is not encountered on these sides.

Working platforms may also be required. We can complete the design of the working platform, if commissioned to do so.

Due to the presence of the basement structures adjacent to the site, anchor installation may not be possible and internal props may be required.

The existence of significant horizontal in-situ stresses in bedrock, particularly in the Sydney basin, is well established. The release of such stresses during the basement excavation may cause adverse impact on the stability of the excavation faces and thus increase the movements. Monitoring of several deep excavations within sandstone and shale in the Sydney region indicates that the lateral displacement at the top of the excavation is generally between 0.5mm to 2mm per meter depth of excavation. As the maximum depth of excavation into sandstone is of about 10m, a lateral deflection at the crest of the excavation between 5mm to 20mm can be expected which will reduce in a stepped fashion to zero at the bulk excavation level. Monitoring of the lateral movement as the excavation progresses is recommended. An assessment of such movements and their impact can be carried out using finite element software such as PLAXIS.

Bored piles may be possible in clayey soil. However, given the encountered deep "uncontrolled" fill, collapse of the sides of the pile holes may occur in these areas if bored piers are used for this site. Temporary/sacrificial steel liners with tremmie methods may be required to support the pier holes. An alternative method, which would be more expensive, is the use of grout-injected (CFA) piles. El recommends the drilling of trial bored piers at the site to assess their suitability. Due to the presence of obstructions within the fill, it is important to maintain the verticality of the shoring piles. Should the piles be out of position, this will affect internal layout/clearances which may require remedial works.

Tremie pumps may be required where high groundwater seepage inflows are present during the drilling of the bored piles. However, relatively large capacity piling rigs will be required for drilling through the sandstone bedrock. The proposed pile locations should take into account the presence of buried services. Further advice should be sought from prospective piling contractors who should be provided with a copy of this report.

4.6.2 Excavation adjacent to RMS Assets

Reference should be made to the RMS Geotechnical Technical Direction (GTD) 2012/001 dated April 2012, with regards to excavation/shoring adjacent to George Street. This document outlines requirements for excavations adjacent to RMS infrastructure and includes the level of geotechnical investigation required, dilapidation surveying, instrumentation and monitoring during construction, trigger levels and contingency plans.

Instrumentation (e.g. inclinometers) and monitoring is typically required where the excavation exceeds 3 m in height (for cantilevered shoring walls) or 6 m in height (for anchored or propped shoring walls). A geotechnical monitoring plan may be required by RMS prior to construction for this site.

As the site of the proposed development lies adjacent to both RMS assets, the asset owners may require further assessment of the potential impact of the proposed development on their assets. In order to assess the latter, a 2D numerical model using a commercially available

computer program, such as WALLAP and/or PLAXIS, will be required. This model will enable the assessment of the potential impact of the proposed development on the RMS assets and predict the likely movements in the shoring wall. El can provide such a service if commissioned to do so.

4.6.3 Retaining Wall Design Parameters

The following parameters may be used for static design of temporary and permanent retaining walls at the subject site:

- Conventional free-standing cantilever walls which support areas where movement is of little concern (i.e. where only gardens or open areas are to be retained), may be designed using a triangular lateral earth pressure distribution and an 'active' earth pressure coefficient, K_a, as shown in Table 4-1;
- Cantilevered walls, where the tops of which are restrained by the floor slabs of the permanent structure or which support movement sensitive elements, should be designed using a triangular lateral earth pressure distribution and an 'at rest' earth pressure coefficient, K_o, as shown in **Table 4-1** below.
- For progressively anchored or propped walls where minor movements can be tolerated (provided there are no buried movement sensitive services), we recommend the use of a trapezoidal earth pressure distribution of 6H kPa for soil, where H is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system, tapering to nil at top and bottom;
- For progressively anchored or propped walls which support areas which are highly sensitive to movement (such as areas where movement sensitive structures or infrastructures or buried services are located in close proximity), we recommend the use of a trapezoidal earth pressure distribution of 8H kPa for soil, where 'H' is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system, tapering to nil at top and bottom;
- All surcharge loading affecting the walls (including from construction equipment, construction loads, adjacent high level footings, etc.) should be adopted in the retaining wall design as an additional surcharge using an 'at rest' earth pressure coefficient, Ko, of 0.58;
- The retaining walls should be designed as drained and measures are to be taken to provide complete and permanent drainage behind the walls. Strip drains protected with a non-woven geotextile fabric should be used behind the shotcrete infill panels for soldier pile walls. Alternatively, for the contiguous pile walls, weepholes comprising 20mm diameter, slotted PVC pipes installed into holes or gaps between adjacent piles at 1.2m centres (horizontal and vertical), may be used. The embedded pipes must, however, be wrapped with a non-woven geotextile fabric (such as Bidim A34) to act as a filter against subsoil erosion;
- For piles embedded into Unit 5 or better, the allowable lateral toe resistance values outlined in **Table 4-1** below may be adopted. These values assume excavation is not carried out within the zone of influence of the wall toe and the rock does not contain adverse defects etc. The upper 0.3m depth of the socket should not be taken into account to allow for tolerance and disturbance effects during excavation.
- If temporary anchors extend beyond the site boundaries, then permission from the neighbouring properties would need to be obtained prior to installation. Also, the presence

of neighbouring basements and/or services and their levels must be confirmed prior to finalising anchor design.

- Anchors should have their bond length within Unit 4 or better. For the design of anchors bonded into Unit 4 or better, the allowable bond stress value outlined in Table 4-1 below may be used, subject to the following conditions:
 - 1. Anchor bond lengths of at least 3m behind the 'active' zone of the excavation (taken as a 45 degree zone above the base of the excavation) is provided;
 - Overall stability, including anchor group interaction, is satisfied;
 - 3. All anchors should be proof loaded to at least 1.33 times the design working load before locked off at working load. Such proof loading is to be witnessed by and engineer independent of the anchoring contractor. We recommend that only experienced contractors be considered for anchor installation with appropriate insurances;
 - 4. If permanent anchors are to be used, these must have appropriate corrosion provisions for longevity.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ma	aterial ¹	Unit 1 Fill	Unit 2 Residual Soil	Unit 3 Extremely Weathered Sandstone	Unit 4 Distinctly Weathered Sandstone	Unit 5 Slightly Weathered to Fresh Sandstone
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	RL of Top o	of Unit (m AHD) ²	12.0 to 11.8	11.0	9.6	6.0 to 4.5	4.25 to 3.65
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bulk Unit	Weight (kN/m ³)	18	20	23	24	24
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Friction	Angle, φ' (°)	25	25	36	-	-
Active, K_a^2 0.41 0.41 0.26 - <td>Earth Pressure</td> <td>At rest, K_o³</td> <td>0.58</td> <td>0.58</td> <td>0.41</td> <td>-</td> <td>-</td>	Earth Pressure	At rest, K _o ³	0.58	0.58	0.41	-	-
Allowable Bearing Pressure (kPa) 5 10003500Allowable Shaft Adhesion (kPa) 4, 5in Compression100350In Uplift50175	Coefficients	Active, Ka ³	0.41	0.41	0.26	-	-
Allowable Shaft Adhesion (kPa) 4,5in Compression100350In Uplift50175		Passive, K _p ³	-	-	-	-	-
Adhesion (kPa) 4,5 in Uplift 50 175	Allowable Bearir	ng Pressure (kPa)⁵	-	-	-	1000	3500
4,5 in Uplift 50 173	Allowable Shaft	in Compression	-	-	-	100	350
Allowable Toe Resistance (kPa) 100 350	· · ·	in Uplift	-	-	-	50	175
	Allowable Toe R	esistance (kPa)	-	-	-	100	350
Allowable Bond Stress (kPa) 50 250	Allowable Bond	Stress (kPa)	-	-	-	50	250

Table 4-1 Geotechnical Design Parameters

Earthquake Site Risk Classification

 AS 1170.4:2007 indicates an earthquake subsoil class of Class C_e.(Shallow Soil) AS 1170.4:2007 indicates that the hazard factor (z) for Sydney is 0.08.

Notes:

More detailed descriptions of subsurface conditions are available on the borehole logs presented in Appendix A. 1

2 Approximate levels of top of unit at the time of our investigation. Levels may vary across the site. 3

Earth pressures are provided on the assumption that the ground behind the retaining walls is horizontal.

- 4 Side adhesion values given assume there is intimate contact between the pile and foundation material and should achieve a clean socket roughness category R2 or better. Design engineer to check both 'piston pull-out' and 'cone liftout' mechanics in accordance with AS4678-2002 Earth Retaining Structures
- 5 To adopt these parameters we have assumed that:
 - Footings have a nominal socket of at least 0.3m, into the relevant founding material;
 - For piles, there is intimate contact between the pile and foundation material (a clean socket roughness category of R2 or better):
 - Potential soil and groundwater aggressivity will be considered in the design of piles and footings;
 - Piles should be drilled in the presence of a Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions. Where groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could be used;

The bases of all pile, pad and strip footing excavations are cleaned of loose and softened material and water is pumped out prior to placement of concrete;

The concrete is poured on the same day as drilling, inspection and cleaning.

The allowable bearing pressures given above are based on serviceability criteria of settlements at the footing base/pile toe of less than or equal to 1% of the minimum footing dimension (or pile diameter).

4.7 Foundations

Following bulk excavation to RL 2.7m, we expect Unit 5 sandstone to be exposed at BEL.

It is recommended that all footings for the building be founded within the sandstone bedrock of similar strength to provide uniform support and reduce the potential for differential settlements.

Pad or strip footings founded within Unit 5 may be preliminarily designed for an allowable bearing capacity of 3500kPa, based on serviceability.

Geotechnical inspections of foundations are recommended to determine that the required bearing capacity has been achieved and to determine any variations that may occur between the boreholes and inspected locations.

Footings founded at or near a crest of an excavation (such as the building located to the north) should be founded below the zone of influence of the lower basement retaining walls, which may be taken as founding below a line drawn at 1 Vertical to 1 Horizontal from the base of the retaining walls. Piles may be required. Specific geotechnical advice should be obtained for such footings taken into consideration the basement excavation and the quality of sandstone at the particular footing location.

4.8 Basement Floor Slab

Following bulk excavations for the proposed basement, sandstone bedrock is expected to be exposed at the basement floor BEL.

Following the removal of all loose and softened materials, we recommend that underfloor drainage be provided and should comprise a strong, durable, single sized washed aggregate such as 'blue metal gravel'. Joints in the concrete floor slab should be designed to accommodate shear forces but not bending moments by using dowelled and keyed joints. The basement floor slab should be isolated from columns. The completed excavation should be inspected by the hydraulic engineer to confirm the extent of the drainage required.

In addition, a system of sub-soil drains comprising a durable single sized aggregate with perforated drains/pipes leading to sumps should be provided. The basement floor slab should be isolated from columns.

Permission may need to be obtained from the NSW Department of Primary Industries (DPI) and possibly Council for any permanent discharge of seepage into the drainage system. Given the subsurface conditions, we expect that seepage volumes would be low and within the DPI limits. However, if permission for discharge is not obtained, the basement may need to be designed as a tanked basement.

5. Further Geotechnical Inputs

Below is a summary of the previously recommended additional work that needs to be carried out:

- Additional Geotechnical Investigation in the form of at least four cored boreholes to provide detailed information on the rock parameters for the cost effective design of foundations, shoring and excavation. The boreholes should extend a minimum of 4m below the bulk excavation level, depending on proposed loading based on structural drawings.
- An inclined borehole may be appropriate to investigate the possibility of any dykes within the site.
- Installation of at least two additional monitoring wells;
- Long term groundwater monitoring and seepage modelling;
- Numerical analysis for assessing the impacts on the RMS asset;
- Dilapidation surveys;
- Design of working platforms (if required) for construction plant by an experienced and qualified geotechnical engineer;
- Classification of all excavated material transported off site;
- Witnessing installation of support measures and proof-testing of anchors (if required).
- Geotechnical inspections of all new footings/piles by an experienced geotechnical professional before concrete or steel are placed to verify their bearing capacity and the insitu nature of the founding strata; and
- Ongoing monitoring of groundwater inflows into the bulk excavation;

We recommend that a meeting be held after initial structural design has been completed to confirm that our recommendations have been correctly interpreted. We also recommend a meeting at the commencement of construction to discuss the primary geotechnical issues and inspection requirements.

6. Statement of Limitations

This report has been prepared for the exclusive use of Mitchell Favaloro and Samprian Pty Ltd who is the only intended beneficiary of El's work. The scope of the assessment carried out for the purpose of this report is limited to those agreed with Mitchell Favaloro and Samprian Pty Ltd.

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the geotechnical industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The conclusions presented in this report are based on a limited investigation of conditions, with specific sampling and test locations chosen to be as representative as possible under the given circumstances.

EI's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. EI may also hafve relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by EI.

El's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during construction. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

We draw your attention to the document "Important Information", which is included in **Appendix D** of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by EI, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Should you have any queries regarding this report, please do not hesitate to contact EI.

References

AS1289.6.3.1:2004, Methods of Testing Soils for Engineering Purposes, Standards Australia.

AS1726:2017, Geotechnical Site Investigations, Standards Australia.

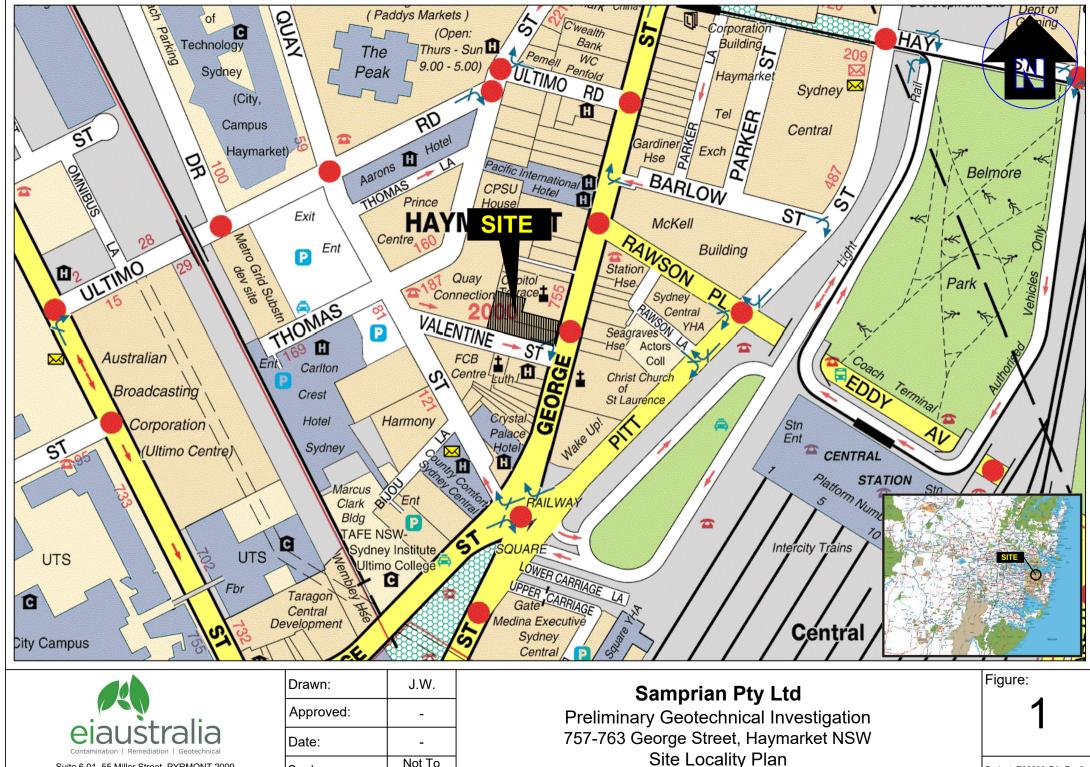
AS2159:2009, Piling - Design and Installation, Standards Australia.

AS3600:2009, Concrete Structures, Standards Australia

Safe Work Australia Excavation Work Code of Practice, dated August 2019 - WorkCover NSW

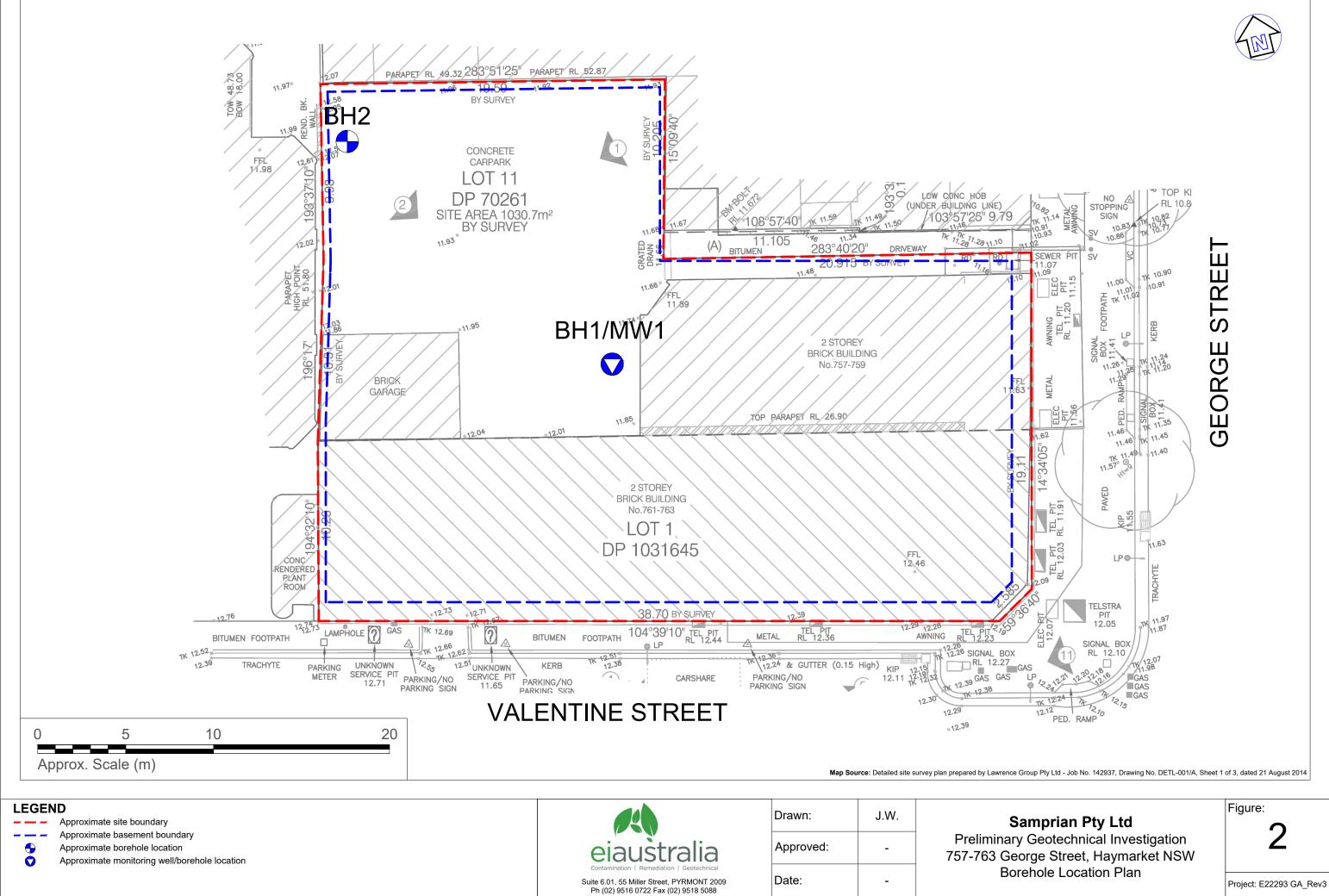
NSW Department of Finance and Service, Spatial Information Viewer, maps.six.nsw.gov.au.

NSW Department of Mineral Resources (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.


Abbreviations

AHD	Australian Height Datum
AS	Australian Standard
BEL	Bulk Excavation Level
BEGL	Below Existing Ground Level
BH	Borehole
DBYD	Dial Before You Dig
DP	Deposited Plan
EI	El Australia
GI	Geotechnical Investigation
NATA	National Association of Testing Authorities, Australia
RL	Reduced Level
SPT	Standard Penetration Test
T-C	Tungsten-Carbide
UCS	Unconfined Compressive Strength

Figures


- Figure 1 Site Locality Plan
- Figure 2 Borehole Location Plan

Project: E22293 GA_Rev3

Suite 6.01, 55 Miller Street, PYRMONT 2009
Ph (02) 9516 0722 Fax (02) 9518 5088

Approved:	-
Date:	-
Scale:	Not To Scale

Appendix A – Borehole Logs And Explanatory Notes

BOREHOLE: BH1/MW1

Project Location Position Job No.

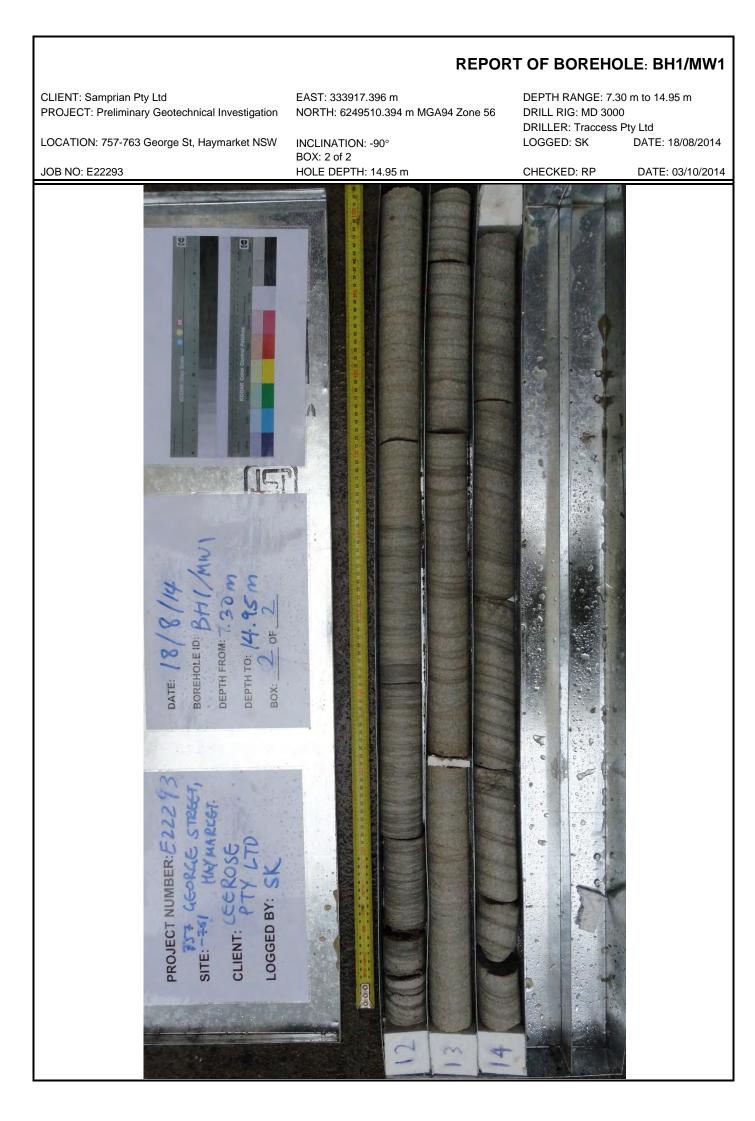
Client

Haymarket Geotechnical investigation 757-763 George St, Haymarket NSW Refer to Figure 2 E22293 Samprian Pty Ltd

East	333917.4 m
North	6249510.4 m MGA
Contractor	Traccess Pty Ltd
Drill Rig	MD 3000
Inclination	-90°

Sheet Date Started GA94 Zone 56 Date Completed 18/8/14 Logged SK Checked RP

1 OF 3 18/8/14 Date: 18/8/14 Date: 3/10/14


	RESISTANCE	Dril E	9		Sampling			Field Material Desc				
		ER				~				<u>≻</u>		
E	-	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	GRAPHIC	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY		
			0 —	0.10	BH1-1 ES		¥-	FILL: CONCRETE; 100 mm.	<u>_</u>		CONCRETE HARDSTAND	
\ 	vн		- - - 1—	0.80	SPT 0.50-0.95 m 20,8.4 N=12 BH1-2 BH1-3 ES			FILL: Silty SAND; fine to medium grained, brown-red, trace brick gravel; medium to coarse, angular. CLAY; high plasticity, brownish yellow with red mottling, trace fine to medium grained sand.	w	-	FILL RESIDUAL SOIL	
			- - - 2—	1.50	1.00-1.20 m SPT 1.50-1.95 m 3,4,7 N=11 BH1-4			Silty CLAY; medium plasticity, pale grey mottled red, trace rootlets.	M - D	St		
			2	3.00			<u> </u>					
AD/T	н	GWNE	-	3.80	SPT 3.00-3.45 m 6,14,17 N=31 BH1-5		• • • • • •	SANDSTONE; pale grey with orange iron staining, inferred extremely low strength, inferred extremely weathered.	_		WEATHERED ROCK	
			4			SPT 4.50-4.95 m 9,9,14 N=23 BH1-6		· · · · ·	ironstaining.			
			5	6.00			* * * * * *		-	-		
	vн		6 <u></u>		SPT 6.00-6.25 m 16,30 N=30/100mm BH1-7			SANDSTONE; fine to medium grained, grey with orange ironstaining, inferred very low strength, inferred distinctly weathered.				
			-	7.30		::: :::		Continued on Cored Derebala	-			
			8 — - - 9 — -					Continued as Cored Borehole				
	10 This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.											

BOREHOLE: BH1/MW1

In	ive	sti	gat	ions	1								BOREHOLE	: BH1	/M	W	1	
Cor	tamina	tion	Remed		stralia otechnica	Proje Loca Posit Job I Clien	tion 757-763 George St, Haymarket NSW ion Refer to Figure 2 No. E22293	1 ([Drill		J		6249510.4 m MGA94 Zone 56DateTraccess Pty LtdDateMD 3000Logg	Sheet Date Started Date Completed Logged SK Checked RP		2 OF 3 18/8/14 18/8/14 Date: 18/8/1 Date: 3/10/1		
			Drilli	ng			Field Material Description						Defect Infor	nation				-
METHOD	WATER	TCR	RQD (SCR)	OEPTH di (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	ST I	ГRE S ₍₅₀₎	RRE NGT MP	TH a	DEFECT DESCRIPTION & Additional Observation:		:	DEF SPA (m	RAGI ECT CINC nm)	G
					7.30		Continuation from non-cored borehole SANDSTONE; fine to medium grained, bedding	DW					7.36-7.55: BPx3 0 - 5° PR RF Fe SN					
NMLC	60-70% RETURN	100	78 (83)	- - 8 - - - 9	9.22		dipping 0-5 degrees, <1 mm thick, average spacing = <1-5 mm, grey-pale brown. SANDSTONE; coarse grained, bedding dipping 10-30 degrees, 3-5 mm thick, average spacing = 1-10 mm, grey-dark grey.	sw			•		7.59: BP 5° PR RF CN 7.89: BP 10° PR RF CN 8.62: JT 10° PR RF CN 8.62-8.73: JT 70 - 80° UN RF CN 8.73: BP 20° PR RF CN 8.90: JT 60° PR RF CN 9.00-9.20: JT 70° PR RF CN					
				- - - 10 —	9.55		SANDSTONE; fine to medium grained, bedding dipping 0-10 degrees, <1-3 mm thick, average spacing = <1-5 mm. SANDSTONE; coarse grained, bedding dipping 10-30 degrees, 3-5 mm thick, average spacing = 10-30 mm, grey-dark grey.	FR			•		9.21: BP 10° PR RF CN 9.33: BP 0° PR RF CN 9.49-9.55: BPx3 0 - 10° PR RF CN avg s	o = 20-50 mm				

Environmental Investigations BOREHOLE: BH1/MW1 Project Haymarket Geotechnical investigation Australia Remediatio 757-763 George St, Haymarket NSW Location East 333917.4 m Sheet 3 OF 3 Date Started 18/8/14 Position Refer to Figure 2 North 6249510.4 m MGA94 Zone 56 18/8/14 E22293 Date Completed Job No. Contractor Traccess Pty Ltd Logged SK Date: 18/8/14 Client Samprian Pty Ltd Drill Rig MD 3000 Checked RP Date: 3/10/14 Inclination -90° Drilling Field Material Description Defect Information INFERRED AVERAGE WEATHERING GRAPHIC LOG STRENGTH DEFECT RQD (SCR) DEFECT DESCRIPTION ROCK / SOIL MATERIAL DESCRIPTION METHOD $Is_{(50)}$ MPa SPACING WATER DEPTH (metres) & Additional Observations (mm) ЕН 10.03 Н 10.3 TCR DEPTH RL 10 100 9.94-10.04: HB 10.05 FR SANDSTONE; medium grained, bedding dipping 20-30 degrees, 2-3 mm thick, average spacing = 3-10 mm, grey-dark grey. 10.40-10.42: BPx2 30° PR RF CN 10.61 10.62: BP 0° PR RF CN SANDSTONE; coarse grained, bedding dipping 0-10 degrees, <1 mm thick, average spacing = 11.00 10-30 mm, grey. 11 From 11 m, as above, bedding dipping 10-30 degrees, 3-5 mm thick, average spacing = 5-10 mm, grey-dark grey. 11.15-11.84: BPx3 10 - 30° PR RF CN avg sp = 100-500 mm 95 (87) 100 12.00 12 12.04: BP 10° healed 12.06-12.12: BPx2 0° PR RF VNR Sandy CLAY; soft, sand is fine to medium grained 12.22-12.70: BPx3 0 - 10° PR RF CN avg sp = 200-300 SANDSTONE; coarse grained, bedding dipping 0-10 degrees, 2-3 mm thick, average spacing = 1-5 mm, dark grey-grey. 60-70% RETURN NMLC 12.60 mm SANDSTONE; coarse grained, bedding dipping 0-10 degrees, <1 mm thick, average spacing = 10-30 mm, grey. 13 13.42 From 13.42 m, as above, bedding is 1-3 mm thick. 13.71-13.90; BPx2 10 - 20° PR RF CN 14.00 14 96 (89) SANDSTONE; coarse grained, bedding dipping 20-30 degrees, 1-3 mm thick, average spacing = 10-30 mm, grey-dark grey. 100 14.07-14.51: DB FIA 1.03 14.74: BP10 PR RF CN 14.95 15 FIA 1 03 2014-07-05 Pri-Hole Terminated at 14.95 m Target depth reached. Monitoring well installed. Backfilled with bentonite and sand. Capped with concrete and gatic cover DGD II ih: 16 and In Situ Tool Dation 17 30 004 3/10/2014 14:51 Control 1055 18 F22293 GP.I SORFHOLE 3 19 20 ILB 1 03 GLB This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes. ₹

BOREHOLE: BH2

Project Location Position Job No.

Client

Haymarket Geotechnical investigation 757-763 George St, Haymarket NSW Refer to Figure 2 E22293 Samprian Pty Ltd

East	333905.9 m
North	6249525.3 n
Contractor	Traccess Pt
Drill Rig	MD 3000
Inclination	-90°

m MGA94 Zone 56 ty Ltd

1 OF 3 Sheet Date Started 18/8/14 Date Completed 18/8/14 Logged SK Date: 18/8/14 Checked RP Date: 3/10/14

	Drilling Sampling								-	Field Material Description							
Image: Project and	METHOD	PENETRATION	WATER		DEPTH RL	FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS				
10 0 0.10.0 cm 10 0 <td< td=""><td>μq</td><td>-</td><td>-</td><td>0-</td><td>0.10</td><td></td><td></td><td>P. ⊾</td><td>-</td><td>FILL: CONCRETE; 100 mm.</td><td></td><td>-</td><td>CONCRETE HARDSTAND</td><td></td></td<>	μq	-	-	0-	0.10			P. ⊾	-	FILL: CONCRETE; 100 mm.		-	CONCRETE HARDSTAND				
1 1				-	-	0.11-0.21 m		\bigotimes	<u> </u>		J w		FILL	-			
E Image: Section of the se				-	0.50	SPT 0.50-0.95 m		\bigotimes	-	brown.	\vdash	-					
Log 1 1 1.53 spr1 1.50.1 95 m Log 1 FLL:Sandy CLAY (top plasticity, brown energe, sand is fine to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium grainer, tace brick and concrete gravel. fire to the medium for th				-	_	1,1,1 N=2		\bigotimes		FILL: Clayey SAND; fine to medium grained, brown-orange, trace brick and concrete gravel; coarse, subrounded.							
EF 3 SPT 1.0.1 35 m 12.5 m </td <td></td> <td></td> <td></td> <td>1 —</td> <td>-</td> <td>BH2-2</td> <td></td> <td>\bigotimes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>				1 —	-	BH2-2		\bigotimes						-			
EF 3 SPT 1.0.1 35 m 12.5 m </td <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>\bigotimes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-	-			\bigotimes									
E-F 3 SPT 3.00-3.46 m BH2.3 SPT 4.50-4.00 m M BH2.4 M M BH2.5 SPT 4.50-4.00 m M BH2.5 SPT 4.50-4.00 m M SPT 5.00-3.46 m BH2.5 M BH2.5 SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT 6.00-6.02 m SPT				-	1.50			\bigotimes	-	FILL: Sandy CLAY; low plasticity, brown-orange, sand is fine	_						
E-F 3 SPT 3 00.3 45 m B 4 5 - 4.90 SPT 4 50.4 45 m - 9 - - - 10 - - - 10 - - - 10 - - - 10 - - - 10 - - - 10 - - - 11 - - - 12 - - - - 12 - - - - 12 - - - - 13 - - - - 14 - - - - 15 - - - - 14 - - - - 15 - - - - 14 - - <t< td=""><td></td><td></td><td></td><td>-</td><td>_</td><td>N=5</td><td></td><td>\bigotimes</td><td></td><td>to medium grained, trace brick and concrete gravel; fine to</td><td></td><td></td><td></td><td></td></t<>				-	_	N=5		\bigotimes		to medium grained, trace brick and concrete gravel; fine to							
EP Image: Second s				2—	-	вп2-3		\bigotimes						-			
EP Image: Second s				-	-			\bigotimes									
EP Image: Second s				-				\bigotimes									
EP Image: Second s				-	-			\bigotimes									
Underständ Underständ SPT 1 40-495 m M-		E-F		3-	-	SPT 3.00-3.45 m		\bigotimes						-			
VH 4.00 2.11 2.12 BH2-5 SPT 4.50-4.95 m 2.11 BH2-5 SPT 4.50-4.95 m 2.11 BH2-5 -				-	-	1 BH2-4		\bigotimes									
VH 4.00 2.11 2.12 BH2-5 SPT 4.50-4.95 m 2.11 BH2-5 SPT 4.50-4.95 m 2.11 BH2-5 -	E		NH NH	_				\bigotimes				_					
WH 4.50 2,11 SPT 4.50-4.95 m 2,11 SPT 4.50-4.95 m 2,11 From 4.5 m, as above, brown with red mottling, trace brick and concrete gravel, medium to coarse, subangular to subrounded. WH 6 6.00 SPT 6.00-6.02 m 8/2,0mm HB BH2.5 Prom 6.0-6.24 m, inferred dense brick layer. WH 7 7.25 Continued as Cored Borehole Prom 6.0-6.24 m, inferred dense brick layer. WH 8 6 Continued as Cored Borehole Prom 6.0-6.24 m, inferred dense brick layer.	AD		9	-	-			\bigotimes						-			
WH - SPT 6.0-6.02 m 320mm HB - From 6.0-6.24 m, inferred dense brick layer. H - - - - - H - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - - B - - - - - - B - - - - - - B - - - - - <t< td=""><td></td><td></td><td></td><td>4 —</td><td>-</td><td></td><td></td><td>\bigotimes</td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>				4 —	-			\bigotimes						-			
WH - SPT 6.0-6.02 m 320mm HB - From 6.0-6.24 m, inferred dense brick layer. H - - - - - H - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - B - - - - - - B - - - - - - B - - - - - - B - - - - - <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>\bigotimes</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-				\bigotimes									
B - <td>-02</td> <td></td> <td></td> <td>-</td> <td>4.50</td> <td>SPT 4.50-4.95 m</td> <td></td> <td>\bigotimes</td> <td>-</td> <td>From 4.5 m, as above, brown with red mottling, trace brick</td> <td>-</td> <td></td> <td></td> <td></td>	-02			-	4.50	SPT 4.50-4.95 m		\bigotimes	-	From 4.5 m, as above, brown with red mottling, trace brick	-						
B - <td>2014-07</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>2,1,1 N=2</td> <td></td> <td>\bigotimes</td> <td></td> <td>and concrete gravel; medium to coarse, subangular to subrounded.</td> <td></td> <td></td> <td></td> <td>-</td>	2014-07			-	-	2,1,1 N=2		\bigotimes		and concrete gravel; medium to coarse, subangular to subrounded.				-			
B - <td>IA 1.03</td> <td></td> <td></td> <td>5 —</td> <td>-</td> <td>БП2-3</td> <td></td> <td>\bigotimes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	IA 1.03			5 —	-	БП2-3		\bigotimes						-			
B - <td>05 Prj: E</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>\bigotimes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	05 Prj: E			-				\bigotimes									
B - <td>2014-07-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>\bigotimes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2014-07-			-	-			\bigotimes									
B - <td>A 1.03 2</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>\bigotimes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	A 1.03 2			-	-			\bigotimes									
B - <td>Lib: El</td> <td>VH</td> <td>-</td> <td>6-</td> <td>6.00</td> <td>SPT 6.00-6.02 m</td> <td></td> <td>\bigotimes</td> <td></td> <td>From 6.0-6.24 m, inferred dense brick layer.</td> <td>-</td> <td></td> <td></td> <td>-</td>	Lib: El	VH	-	6-	6.00	SPT 6.00-6.02 m		\bigotimes		From 6.0-6.24 m, inferred dense brick layer.	-			-			
	I - DGD			-		BH2-6		\bigotimes									
H - - 7.25 -	Situ Too			-	_			\bigotimes									
	and In	н		-	-			\bigotimes									
	atgel Lai			7—	7.05			\bigotimes						-			
	0.004 D.			-	1.20		+			Continued as Cored Borehole							
	:51 8.3			-	-									-			
	2014 14			-	-									.			
	> 03/10/			8-	1												
	ingFile>:			-	-												
	< <draw< td=""><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> .</td></draw<>			-	-									.			
	93.GPJ			-	1												
	3 E22			9	1									-			
	EHOLE			-	-												
	NU BORI			-	-												
	-og IS ⊅			-	1												
	. LIB 1.0							, 511001	- 00								
	EIA																

BOREHOLE: BH2

Environme	ntal A
Investig	ations 🗤
	Australia
Contamination Re	emediation Geotechnica

Haymarket Geotechnical investigation Project 757-763 George St, Haymarket NSW Location Refer to Figure 2 Position E22293 Job No. Samprian Pty Ltd Client

East 333905.9 m North Contractor Drill Rig Inclination -90°

6249525.3 m MGA94 Zone 56 Traccess Pty Ltd MD 3000

Sheet Date Started Date Completed 18/8/14 Logged SK Checked RP

Date: 18/8/14 Date: 3/10/14

2 OF 3

18/8/14

											Checked RP Date: 3/			
Drilling							Field Material Description	U	INFERRED	Defect Information				
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STRENGTH Is ₍₅₀₎ MPa	DEFECT DESCRIPTION & Additional Observations	AVERAG DEFEC SPACIN (mm)			
					7.25		Continuation from non-cored borehole	DW						
NMLC	70-80% RETURN	100	64 (89)		<u>8.35</u> <u>9.42</u> <u>9.74</u>		SANDSTONE; fine grained, bedding dipping 0-5 degrees, dark grey with black organic matter through bedding. SANDSTONE; medium to coarse grained, bedding dipping 10-30 degrees, 1-3 mm thick, average spacing = 3-10 mm, grey-dark grey. SANDSTONE; fine to medium grained, bedding dipping 10-20 degrees, 1-3 mm thick, average spacing = <1-5 mm, dark grey-grey.	SW FR	•	7.30-8.35: BPx22 0 - 5° PR RF Fe SN avg sp = 5-30 mm 7.97-7.98: CS 10 mm, GRAVEL; coarse, subrounded 8.01-8.05: DS 40 mm, SAND; fine to medium grained 8.20-8.26: DZ 60 mm, SAND; fine to medium grained 8.62: BP 5° PR RF CN 9.07: BP 5° PR RF CN 9.26: BP 5° PR RF CN 9.36: JT 0 - 20° CU RF CN 9.35: JT 0 - 20° CU RF CN 9.51-9.73: BPx3 0 - 5° PR RF CN avg sp = 5-20 mm				

In	ve	sti	gat	tions	5 00			BOREHOLE: BI											
Australia Contamination Remediation Geotechnica					istralia eotechnica	ProjectHaymarket Geotechnical investigationLocation757-763 George St, Haymarket NSWPositionRefer to Figure 2Job No.E22293ClientSamprian Pty Ltd				n ract Rig natio			333905.9 m Sheet 6249525.3 m MGA94 Zone 56 Date Started Traccess Pty Ltd Date Completed MD 3000 Logged SK -90° Checked RP			3 OF 3 18/8/14 1 18/8/14 Date: 18/8 Date: 3/10			
			Drilli	ng			Field Material Description						Defect	Information		_	_		
METHOD	WATER	TCR TCR MLdad (metres) 0 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2			DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION		INFERRED STRENGTH Is ₍₅₀₎ MPa			TH a	& Additional Observations			AVERAGE DEFECT SPACING (mm)			
		100	64 (89)	10	_		SANDSTONE; coarse grained, bedding dipping 20-30 degrees, 1-3 mm thick, average spacing = 10-30 mm, pale grey-grey.	FR											
NMLC	70-80% RETURN	100	93 (96)	11 —			From 10.9 m, average spacing = 3-10 mm.				•		10.60: JT 0° PR RF CN 11.14: JT 0° PR RF CN 11.33-11.82: BPx3 20 - 30° PR RF 200-300 mm	CN avg sp =					
				—12—	12.00		Hole Terminated at 12.00 m Target depth reached. Backfilled to surface level with drilling spoil and						11.95: JT 0° PR RF CN			+			
				- - -	-		concrete capped.												
				13 —	-														
				14 —	-														
07-05 Pg: EIA 1:03 2014-07-05				-	-														
				15 —	-														
- DGD LID: EIA 1.0				16 —	-														
ab and In Situ 1001				- - -	-														
8.30.004 Datger L				17 —	-														
 03/10/2014 14:52 					-														
PJ < <drawingfile></drawingfile>				18 —															
HOLE 3 E22293.0				19 —	-														
IS AU COREU BUR					-														
EAL UB 133GLE LOG IS AU COREU BOREHOLE 3 E2223GPJ SCHWINGHIEPP 03702014 14:22 830.004 Dagetua and In Silu Ioo- DGJ LUD: EAT 103 2014				20 —	<u> </u>	 Th	is borehole log should be read in conjunction with E	: nviror	me	ntal	Inv	/est	l tigations Australia's accompanying	standard notes.					

Γ

REPORT OF BOREHOLE: BH2

CLIENT: Samprian Pty Ltd PROJECT: Preliminary Geotechnical Investigation

EAST: 333905.891 m NORTH: 6249525.260 m MGA94 Zone 56 DEPTH RANGE: 7.25 m to 12.00 m DRILL RIG: MD 3000 DRILLER: Traccess Pty Ltd LOGGED: SK DATE: 18/08/2014

LOCATION: 757-763 George St, Haymarket NSW

INCLINATION: -90° BOX: 1 of 1 HOLE DEPTH: 12.00 m

JOB NO: E22293

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

DRILLING/EXCAVATION METHOD

HA	Hand Auger	ADH	Hollow Auger	NQ	Diamond Core - 47 mm
DT	Diatube Coring	RT	Rotary Tricone bit	NMLC	Diamond Core - 52 mm
NDD	Non-destructive digging	RAB	Rotary Air Blast	HQ	Diamond Core - 63 mm
AD*	Auger Drilling	RC	Reverse Circulation	HMLC	Diamond Core - 63 mm
*V	V-Bit	PT	Push Tube	EX	Tracked Hydraulic Excavator
*T	TC-Bit, e.g. AD/T	WB	Washbore	HAND	Excavated by Hand Methods
PENE	TRATION RESISTANCE				
L	Low Resistance	Rapid penet	ration/ excavation possible v	with little effort from e	equipment used.
м	Medium Resistance	Penetration/	excavation possible at an a	cceptable rate with n	noderate effort from equipment used.
н	High Resistance	Penetration/ equipment u	excavation is possible but a sed.	t a slow rate and rec	uires significant effort from
R	Refusal/Practical Refusal	No further p	rogress possible without risk	of damage or unacc	ceptable wear to equipment used.
	assessments are subjective and ar tools and experience of the operate		on many factors, including e	quipment power and	weight, condition of excavation or
WATE	R				
	$\stackrel{\scriptstyle\scriptstyle{\sim}}{}$ Standing Water Le	evel		Partial v	
	▷ Water Seepage				te Water Loss
GWN			SERVED - Observation of g epage or cave-in of the bore		r present or not, was not possible
GWN	GROUNDWATE	R NOT ENC	OUNTERED - Borehole/ t	test pit was dry soon	
	groundwater could been left open for			w may have been of	oserved had the borehole/ test pit
SAME		a longer perio			
SPT		ration Test to	AS1289.6.3.1-2004		
4,7,11 N	l=18 4,7,11 = Blows	per 150mm.	N = Blows per 300mm per		
30/80mr RW			s, the blows and penetration ie rod weight only, N<1	for that interval are	reported, N IS not reported
HŴ	Penetration occ	urred under th	e hammer and rod weight o	nly, N<1	
HB		bouncing on	anvil, N is not reported		
Sampli DS	Disturbed Samp	le			
ES	Sample for envi		ting		
BDS GS	Bulk disturbed S Gas Sample	Sample			
WS	Water Sample				
U50		e sample - nur	nber indicates nominal samp	ole diameter in millim	netres
Testing FP	J Field Permeabil	ity test over se	ection noted		
FVS			sed as uncorrected shear str	ength (sv= peak valu	ue, sr= residual value)
PID	Photoionisation		0 11		
PM PP	Pressuremeter t Pocket Penetro		on noted ressed as instrument readin	α in kPa	
WPT	Water Pressure	•		g in the s	
DCP	Dynamic Cone I		test		
CPT CPTu	Static Cone Per Static Cone Per		vith pore pressure (u) measu	urement	
	OGICAL BOUNDARIES		····· P ··· P ··· P · · · · · · · · · ·		
	= Observed Boundary		= Observed Bounda	ary	 ? = Boundary (interpreted or inferred)
	(position known)		(position approxim	ate)	
ROCH					
	TCR=Total Core Reco	overy (%)		KQD = KOCK QU	ality Designation (%)
	= Length of core recover Length of core run	<u>ed</u> × 100		$=\frac{\sum Axial \ lengths}{Length \ of}$	f core > 100mm f core run × 100
L					

12					METHO			SCRIPTION AND TEST	
	ediation Geotechnical		<u>****</u> *	OR	GANIC SOILS				
	FILL	-0	<u>34 34</u> <u>34 34</u> 34 <u>34 34</u>		, OH or Pt)			CLAY (CL, (CI or CH)
$\mathcal{O}_{\mathcal{C}}$	COUBL BOULD		* * * * * * * * * * * *	SIL	T (ML or MH)			SAND (SP o	or SW)
0000	GRAVE	L (GP or GW)	Combinati sandy clay		of these basic sy	ymbols may l	be used to	indicate mixed ma	aterials such as
Soil is broa						e preferred m	nethod give	en in AS 1726:201	7, Section 6.1 –
PARTICL	E SIZE CH	ARACTERISTIC			GROUP S	YMBOLS		-	
Fraction	Component	s Sub Division	Size mm		Major Di	visions	Symbol		ription vel and gravel-sand
Oversize	BOULDERS	3	>200			6 of n is	GW	mixtures, little	or no fines, no dry ength.
00013120	COBBLES	Coarse	63 to 200 19 to 63		COARSE GRAINED SOILS More than 65% of soil excluding oversize fraction is greater than 0.075mm	GRAVEL More than 50% c coarse fraction ii >2.36mm	GP	mixtures, little	avel and gravel-sand or no fines, no dry ength.
	GRAVEL	Medium	6.7 to 19		VED : soil e m	GF lore tl oarse >2	GM		el-sand-silt mixtures, um dry strength.
Coarse		Fine	2.36 to 6.7		GRAINE 55% of soi action is gr 0.075mm		GC		gravel-sand-clay to high dry strength.
grained soil		Coarse	0.6 to 2.36		n 65°	SAND More than 50% of coarse fraction is <2.36 mm	SW		d and gravelly sand, s, no dry strength.
	SAND	Medium	0.21 to 0.6		OAR e tha rsize	SAND than 50 ⁶ se fractio 2.36 mm	SP		nd and gravelly sand, s, no dry strength.
		Fine	0.075 to 0.2	1		SA I e thai rse fr <2.36	SM		silt mixtures, zero to dry strength.
Fine grained	SILT		0.002 to 0.07	75		Mor coa	SC		ndy-clay mixtures, gh dry strength.
soil	CLAY		<0.002		ading han	Liquid Limit less < 50%	ML	sands, rock flour	ow plasticity, very fine , silty or clayey fine edium dry strength.
60			MP 6		FINE GRAINED SOILS e than 35% of soil exclu ersized fraction is less th 0.075mm		CL, CI	plasticity, gravelly silty clays, medium	s of low to medium / clays, sandy clays, n to high dry strength.
50 -			9.0 10 A 100 - 201	AINED % of sction i		Liquic	OL	low plasticity, I	organic silty clays of ow to medium dry ength.
PLASTICITY INDEX 1 ₉		CH or OH	1,0,13		E GF an 35 zed fr 0	- ^%	MH		high plasticity, high to dry strength.
		CI or OI	Fine GRAINED SOLS More than 35% of soil excluding oversized fraction is less than 0.075mm			Liquid Limit > than 50%	СН	Inorganic clays of	high plasticity, high to dry strength.
DIAS 10	CL or OL	MH				th _i L	OH		of medium to high to high dry strength.
•	CL ML 10 20 30	40 50 60	70 80 90	100	High Orga so	anic	PT		other highly organic oils.
MOISTU									
Symbol		Description							
D M		Non- cohesive and Soils feel cool, da		. 60	il tanda ta atiak t	agathar			
W						-	water for	ms when handling.	
content a	content of col s follows: Moi	nesive soils shall b	e described in mit (<i>w</i> < PL); Mo	relat	ion to plastic limi	it (PL) or liqu	id limit (LL	.) for soils with high f plastic limit (<i>w</i> < F	
		SISTENCY		_			DENS	ITY	
Symbol	Term	Undrained Shear Strength (kPa)	SPT "N" #		Symbol	Term	n I	Density Index %	SPT "N" #
VS S	Very Soft Soft	≤ 12 >12 to ≤ 25	≤ 2 >2 to ≤ 4	F	VL	Very Lo Loose		≤ 15 >15 to ≤ 35	0 to 4 4 to 10
F	Firm	$>12 \text{ to} \le 25$ >25 to ≤ 50	$>2 10 \le 4$ >4 to 8	-	MD	Medium D		>15 to ≤ 35 >35 to ≤ 65	10 to 30
St	Stiff	>50 to ≤ 100	>8 to 15		D	Dens	e	>65 to ≤ 85	30 to 50
VSt H	Very Stiff Hard	>100 to ≤ 200 >200	>15 to 30 >30	L	VD	Very De	nse	>85	Above 50
Fr	Friable	-	200						
	elations are n							pressure, moisture	of the material. content of the soil,
	OMPONEN	TS							
Term	Assessm					-		roportion by Mass	
Add 'Trac	or no diffe	Presence just detectable by feel or eye but soil properties little or no different to general properties of primary component				Coarse grained soils: ≤ 5% Fine grained soil: ≤ 15%			%
Add 'With	or no diffe	easily detectable I rent to general pro	perties of prima	ary c	omponent	Fine grained soil: 15 - 30%			0%
Prefix so name		Presence easily detectable by feel or eye in conjunction with the general properties of primary component				Coarse grained soils: >12% Fine grained soil: >30%			

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 2017, Section 6.2 – Rock identification, description and classification.

VLVery Low0.03 to 0.1with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 can be broken by finger pressure.LLow0.1 to 0.3Easily scored with a knife; indentations 1 mm to 3 mm show in the spe with firm blows of pick point; has dull sound under hammer. A piece of 150 mm long by 50 mm diameter may be broken by hand. Sharp ed core may be friable and break during handling.MMedium0.3 to 1Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.HHigh1 to 3A piece of core 150 mm long by 50 mm diameter cannot be broken by but can be broken with pick with a single firm blow; rock rings under hammer.VHVery High3 to 10Hand specimen breaks with pick after more than one blow; rock rings u hammer.	Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide	
LLow0.1 to 0.3with firm blows of pick point; has dull sound under hammer. A piece of 150 mm long by 50 mm diameter may be broken by hand. Sharp ed core may be friable and break during handling.MMedium0.3 to 1Readily scored with a knife; a piece of core 150 mm long by 50 mm diam can be broken by hand with difficulty.HHigh1 to 3A piece of core 150 mm long by 50 mm diameter cannot be broken by but can be broken with pick with a single firm blow; rock rings under hamVHVery High3 to 10Hand specimen breaks with pick after more than one blow; rock rings under hammer.EHExtremely High>10Specimen requires many blows with geological pick to break through material; rock rings under hammer.	VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.	
M Medium 0.3 to 1 can be broken by hand with difficulty. H High 1 to 3 A piece of core 150 mm long by 50 mm diameter cannot be broken by but can be broken with pick with a single firm blow; rock rings under ham VH Very High 3 to 10 Hand specimen breaks with pick after more than one blow; rock rings under hammer. EH Extremely High >10 Specimen requires many blows with geological pick to break through material; rock rings under hammer.	L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimer with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges or core may be friable and break during handling.	
H High 1 to 3 but can be broken with pick with a single firm blow; rock rings under ham VH Very High 3 to 10 Hand specimen breaks with pick after more than one blow; rock rings to hammer. EH Extremely High >10 Specimen requires many blows with geological pick to break through material; rock rings under hammer.	М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.	
VH Very High 3 to 10 hammer. EH Extremely High >10 Specimen requires many blows with geological pick to break through material; rock rings under hammer.	Н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.	
EH Extremely High >10 material; rock rings under hammer.	VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.	
* Rock Strength Test Results	EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.	
	* Rock Strength Test Results Violation Point Load Strength Index, Is(50), Axial test (MPa)				

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. However UCS is typically 20 x $Is_{(50)}$.

ROCK MATERIAL WEATHERING CLASSIFICATION

Sym	bol	Term	Field Guide
RS Residual Soil		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.
XW E		Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.
	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or
DW	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.
SW	1	Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.
FR		Fresh	Rock shows no sign of decomposition or staining.

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 2017, Section 6.2 – Rock identification, description and classification.

Defect Spacing					Bedd	ing Tł	nickness (Stra	tification)		
Term		Descriptio	on		Term	-				Spacing (mm)	
Manakar		N. I. Januaria			Thinly	lamin	ated			<6	
Massive		No layerin		Lamin	nated				6 – 20		
Indistinct		Lavering i	ust visible; little effe	ct on properties	Very t	thinly l	bedded			20 - 60	
maistinet		Layening j		ci on propenties	Thinly	/ bedd	ed			60 – 200	
		Lavering (bedding, foliation, c	leavage) distinct.	Mediu					200 - 600	
Distinct			s more easily paral		Thick					600 – 2,000	
					Very t	thickly	bedded			> 2,000	
ABBREVIATIONS AND	DESCR		1	-5							
Defect Type		Abbr.	Description								
Joint		JT	May be closed or t	filled by air, water o	or soil or re	ock su	bstance, which	n acts as c	ement.	e or no tensile strengt	
Bedding Parting		BP	layering/ bedding.	e or parting, across Bedding refers to t anisotropy in the re	the layerin	ng or s			0 1	or sub-parallel to on during deposition,	
Contact		CO	The surface betwe	en two types or ag	ges of rock	۲.					
Sheared Surface		SSU	A near planar, cur	ved or undulating s	surface wh	hich is	usually smoot	h, polishe	d or slickenside	d.	
Sheared Seam/ Zone (Fault)	ę	SS/SZ	S/SZ Seam or zone with roughly parallel alr mm) parallel and usually smooth or sli				most planar boundaries of rock substance cut by closely spaced (often <50 lickensided joints or cleavage planes.				
Crushed Seam/ Zone (Fault)	(CS/CZ	Seam or zone composed of disoriented usually angular fragments of the host rock substance, with near-planar boundaries. The brecciated fragments may be of clay, silt, sand or gravel sizes or mixture of the section of								
Extremely Weathered Seam/ Zone	XV	VS/XWZ	Seam of soil substance, often with gradational boundaries, formed by weathering of the rock material in plac						material in places.		
Infilled Seam		IS	Seam of soil substance, usually clay or clayey, with v migrating into joint or open cavity.				very distinct rou	ughly para	llel boundaries,	formed by soil	
Vein		VN	Distinct sheet-like	body of minerals c	rystallised within rock through typically open-space filling or crack-seal growth						
NOTE: Defects size of	<100mn	n SS, CS a	nd XWS. Defects s	ize of >100mm SZ	, CZ and >	XWZ.					
ABBREVIATIONS AND	DESCR	IPTIONS F	FOR DEFECT SHA	PE AND ROUGHN	IESS						
Shape	Abbr.	Descrip	tion	Roughness	Abbr.	Dese	escription				
Planar	PR	Consist	ent orientation	Polished	POL	Shin	y smooth surfa	ice			
Curved	CU	Gradua orientat	l change in ion	Slickensided	SL	Groo	oved or striated	l surface,	usually polished	1	
Undulating	UN	Wavy s	urface	Smooth	SM	Smo	oth to touch. F	ew or no s	surface irregula	rities	
Stepped	ST	One or steps	more well defined	Rough	RO		y small surface s like fine to co	•	· ·	generally <1mm).	
Irregular	IR	Many sl orientat	harp changes in ion	Very Rough	VR		y large surface /ery coarse sar	0	ties, amplitude g	generally >1mm. Fee	
Drientation:			ioles – The dip (incli h oles – The inclinati					3.			
ABBREVIATIONS AND DESCRIPTIONS FOR DEFECT COATING				TING			DEFECT APE	ERTURE			
Coating	Abbr.	Descript	ion				Aperture	Abbr.	Description		
Clean	CN	No visible	coating or infilling				Closed	CL	Closed.		
Stain	SN		No visible coating or infilling No visible coating but surfaces are discoloured				Open	OP	Without any in	fill material.	
Stairi		often limonite (orange-brown) A visible coating of soil or mineral substance,					-				

Appendix B - Laboratory Certificates

ABN: 25 131 532 020

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

Test Report

Customer: Environmental Investigations Australia Pty Ltd

Job number: 14-0075

Project:PGI - E22293Location:757-761 George Street, Haymarket NSW

Report number: 1

Page: 1 of 1

Moisture Content

Sampling method: Sample tested as received

Test method(s): AS 1289.1.1, 2.1.1

		Results	
Laboratory sample no.	4819 BH1 - 4		
Customer sample no.	1.5-1.95m		
Date sampled	18/08/2014		
Material description	SILTY CLAY, pale grey mottled orange/red		
Moisture content (%)	17.1		

Laboratory sample no.			
Customer sample no.			
Date sampled			
Material description			
Moisture content (%)			

Approved Signatory:

Elatotanal.

E. Maldonado

Date: 26/08/2014

Accredited for compliance with ISO/IEC 17025.

ABN: 25 131 532 020

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

Test Report

Customer:	Environmental Investigations Australia Pty Ltd
Project:	PGI - E22293
Location:	757-761 George Street, Haymarket NSW

Job number: 14-0075

Report number: 2

Page: 1 of 1

Soil Index Properties

Sampling method: Sample tested as received

Test method(s): AS 1289.1.1, 2.1.1, 3.1.2, 3.2.1, 3.3.1

	Results				
Laboratory sample no.	4819				
Customer sample no.	BH1 - 4 1.5-1.95m				
Date sampled	18/08/2014				
Material description	SILTY CLAY, pale grey mottled orange/red				
Liquid limit (%)	47				
Plastic limit (%)	15				
Plasticity index (%)	32				
Linear shrinkage (%)	-				
Cracking / Curling / Crumbling	-				
Sample history	Oven dried				
Preparation	Dry sieved				

Notes:

Approved Signatory:

Elatotanal.

E. Maldonado

Date: 27/08/2014

ABN: 25 131 532 020

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

Test Report

Customer: Environmental Investigations Australia Pty Ltd Project: PGI - E22293 Location: 757-761 George Street, Haymarket NSW

Job number: 14-0075

Report number: 3

Page: 1 of 2

Point Load Strength Index

Sampling method: Samples tested as received

Test method(s): AS 4133.4.1 Clause 3.2, 3.3

	Results					
Laboratory sample no.	4821	4822	4823	4824		
Customer sample no.	BH1	BH1	BH1	BH1		
Sample depth	8.41-8.62m	9.33-9.50m	11.65-11.84m	13.00-13.31m		
Date sampled	18/08/2014	18/08/2014	18/08/2014	18/08/2014		
Date tested	22/08/2014	22/08/2014	22/08/2014	22/08/2014		
Lithological description	SANDSTONE	SANDSTONE	SANDSTONE	SANDSTONE		
Diametral						
Moisture content condition	Moist	Moist	Moist	Moist		
Nature of weakness planes	Laminated	Laminated	Laminated	Bedded		
Specimen size						
Length (mm)	37.0	42.5	38.0	42.0		
Diameter (mm)	51.5	51.5	51.5	51.5		
I _s (MPa)	0.95	1.4	1.8	1.3		
I _{s(50)} (MPa)	0.97	1.4	1.8	1.3		
Failure mode	Paralell to laminae	Paralell to laminae	Paralell to laminae	Paralell to bedding		
Axial						
Moisture content condition	Moist	Moist	Moist	Moist		
Nature of weakness planes	Laminated	Laminated	Laminated	Bedded		
Specimen size						
Height (mm)	38.5	42.0	37.5	39.5		
Diameter (mm)	51.5	51.5	51.5	51.5		
I _s (MPa)	1.4	1.6	1.7	1.6		
I _{s(50)} (MPa)	1.4	1.7	1.7	1.6		
Failure mode	Perpendicular to laminae	Perpendicular to laminae	Perpendicular to laminae	Perpendicular to bedding		

Notes:

Approved Signatory: Elalorado E. Maldonado

Date: 27/08/2014

ABN: 25 131 532 020

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

Test Report

Customer: Environmental Investigations Australia Pty Ltd Project: PGI - E22293 Location: 757-761 George Street, Haymarket NSW

Job number: 14-0075

Report number: 3

Page: 2 of 2

Point Load Strength Index

Sampling method: Samples tested as received

Test method(s): AS 4133.4.1 Clause 3.2, 3.3

	Results				
Laboratory sample no.	4825	4826	4827	4828	
Customer sample no.	BH2	BH2	BH2	BH2	
Sample depth	7.71-7.78m	9.35-9.51m	9.74-10.00m	11.35-11.51m	
Date sampled	18/08/2014	18/08/2014	18/08/2014	18/08/2014	
Date tested	22/08/2014	22/08/2014	22/08/2014	22/08/2014	
Lithological description	SANDSTONE	SANDSTONE	SANDSTONE	SANDSTONE	
Diametral					
Moisture content condition	Moist	Moist	Moist	Moist	
Nature of weakness planes	Bedded	Bedded	Bedded	Laminated	
Specimen size					
Length (mm)	35.0	35.0	44.0	38.0	
Diameter (mm)	51.5	51.5	51.5	51.5	
I _s (MPa)	0.23	1.3	1.4	1.6	
I _{s(50)} (MPa)	0.23	1.3	1.4	1.6	
Failure mode	Paralell to bedding	Paralell to bedding	Paralell to bedding	Paralell to laminae	
Axial					
Moisture content condition	Moist	Moist	Moist	Moist	
Nature of weakness planes	Bedded	Bedded	Bedded	Laminated	
Specimen size					
Height (mm)	34.0	34.5	43.5	35.5	
Diameter (mm)	51.5	51.5	51.5	51.5	
I _s (MPa)	0.50	1.4	1.2	1.7	
I _{s(50)} (MPa)	0.49	1.4	1.3	1.7	
Failure mode	Perpendicular to bedding	Perpendicular to bedding	Perpendicular to bedding	Perpendicular to laminae	

Notes:

Approved Signatory: Elalorado E. Maldonado

Date: 27/08/2014

ABN: 25 131 532 020

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 Ph: (02) 9674 7711 | Fax: (02) 9674 7755 | Email: info@resourcelab.com.au

Test Report

Customer: Environmental Investigations Australia Pty Ltd PGI - E22293 Project: 757-761 George Street, Haymarket NSW Location:

Job number: 14-0075 Report number: 4 Page: 1 of 1

Soil Aggressivity

Samples tested as received Sampling method:

Test method(s): AS 1289.1.1, EA002, EA010 ED040, ED045G.

	Results					
Laboratory sample no.	4819	4820				
Customer sample no.	BH1 - 4 1.5-1.95m	BH1 - 6 4.5-4.95m				
Date sampled	18/08/2014	18/08/2014				
Material description	SILTY CLAY, pale grey mottled orange/red	CLAY, mottled grey/red-brown/ orange-brown				
рН	5.5	5.2				
Electrical conductivity (µS/cm)	46	78				
Sulfate SO ₄ (mg/kg)	160	650				
Chloride Cl (mg/kg)	10	30				
Notes: EA002: pH (Soils), EA010: Condu	uctivity, ED040: Sulfur as	s SO4 2-, ED045G: Chl	oride Discrete Analyser - tested by Australian Laboratory Services,			

NATA accredited laboratory number 825. Report reference ES1418447.

Approved By: Elatoland. E. Maldonado

Date: 27/08/2014

R25.v4 / 1 of 1

Appendix C – Vibration Limits

German Standard DIN 4150 – Part 3: 1999 provides guideline levels of vibration velocity for evaluating the effects of vibration in structures. The limits presented in this standard are generally considered to be conservative.

The DIN 4150 values (maximum levels measured in any direction at the foundation, OR, maximum levels measured in (x) or (y) directions, in the plane of the uppermost floor), are summarised in **Table A** below.

It should be noted that peak vibration velocities higher than the minimum figures in **Table A** for low frequencies may be quite 'safe', depending on the frequency content of the vibration and the actual conditions of the structures.

It should also be noted that these levels are 'safe limits', up to which no damage due to vibration effects has been observed for the particular class of building. 'Damage' is defined by DIN 4150 to include even minor non-structural cracking in cement render, the enlargement of cracks already present, and the separation of partitions or intermediate walls from load bearing walls. Should damage be observed at vibration levels lower than the 'safe limits', then it may be attributed to other causes. DIN 4150 also states that when vibration levels higher than the 'safe limits' are present, it does not necessarily follow that damage will occur. Values given are only a broad guide.

Group	Type of Structure	Peak Vibration Velocity (mm/s)			
		At Foundation Level at a Frequency of:			Plane of Floor of Uppermost Storey
		Less than 10 Hz	10 Hz to 50 Hz	50 Hz to 100 Hz	All Frequencies
1	Buildings used for commercial purposes, industrial buildings and buildings of similar design	20	20 to 40	40 to 50	40
2	Dwellings and buildings of similar design and/or use	5	5 to 15	15 to 20	15
3	Structures that because of their particular sensitivity to vibration, do not correspond to those listed in Group 1 and 2 and have intrinsic value (e.g. buildings that are under a preservation order)	3	3 to 8	8 to 10	8

Table A DIN 4150 – Structural Damage – Safe Limits for Building Vibration

Note: For frequencies above 100 Hz, the higher values in the 50 Hz to 100 Hz column should be used.

Appendix D – Important Information

Important Information

SCOPE OF SERVICES

The geotechnical report ("the report") has been prepared in accordance with the scope of services as set out in the contract, or as otherwise agreed, between the Client And El Australia ("El"). The scope of work may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

RELIANCE ON DATA

El has relied on data provided by the Client and other individuals and organizations, to prepare the report. Such data may include surveys, analyses, designs, maps and plans. El has not verified the accuracy or completeness of the data except as stated in the report. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations ("conclusions") are based in whole or part on the data, El will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to El.

GEOTECHNICAL ENGINEERING

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared for a specific client, for a specific project and to meet specific needs, and may not be adequate for other clients or other purposes (e.g. a report prepared for a consulting civil engineer may not be adequate for a construction contractor). The report should not be used for other than its intended purpose without seeking additional geotechnical advice. Also, unless further geotechnical advice is obtained, the report cannot be used where the nature and/or details of the proposed development are changed.

LIMITATIONS OF SITE INVESTIGATION

The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model, and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation, the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies. The engineering logs are the subjective interpretation of subsurface conditions at a particular location and time, made by trained personnel. The actual interface between materials may be more gradual or abrupt than a report indicates.

SUBSURFACE CONDITIONS ARE TIME DEPENDENT

Subsurface conditions can be modified by changing natural forces or man-made influences. The report is based on conditions that existed at the time of subsurface exploration. Construction operations adjacent to the site, and natural events such as floods, or ground water fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. El should be kept appraised of any such events, and should be consulted to determine if any additional tests are necessary.

VERIFICATION OF SITE CONDITIONS

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that EI be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of change of soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

REPRODUCTION OF REPORTS

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this Company. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimize the likelihood of misinterpretation from logs.

REPORT FOR BENEFIT OF CLIENT

The report has been prepared for the benefit of the Client and no other party. El assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of El or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

OTHER LIMITATIONS

El will not be liable to update or revise the report to take into account any events or emergent circumstances or fact occurring or becoming apparent after the date of the report.